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ABSTRACT 
We propose a model for detail that captures oscillations and we use the local extrema of the input image to 

extract information about oscillations..We propose a simple algorithm for decomposing images into multiple 

scales. Currently used edge-preserving image decomposition techniques consider image detail to be of low 

contrast variation. They apply filters which extract features with increasing contrast as successive layers of 

detail. Thus they are unable to distinguish between high contrast, fine-scale features and edges of similar 

contrast that are to be preserved. We compare our results with existing edge-preserving image decomposition 

algorithms. 
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1. INTRODUCTION 
A lot of applications in digital image capture and processing technique require decomposition of an image into 

different scales. Recently scales are defined based on spatial scale definitions combined with the idea to 

differentiate strong edges. Existing approaches share a common idea of an edge– large gradients, or large value 

differences. This makes it challenging to capture fine details or textures that have fine spatial scale but high 

contrast. For example, in Figure 1(d), edges that are to be preserved are lower contrast than the oscillations to be 

smoothed. Extracting the white dots on the vase as detail requires aggressive smoothing of gradients. This may 

blur single edges that are to be preserved. There raises a challenge in defining fully multistage decompositions as 

the interplay between spatial and edge consideration leads to unexpected results. Here we are proposing a non-

linear image decomposition technique that extracts fine-scale features, regardless of their contrast, as detail and 

yet preserves softer salient edges in the base layer. Our approach captures local image oscillations by considering 

local image extrema. Fine-scale texture is characterized by rapid oscillations between minima and maxima and 
the oscillation which are between extrema provide critical information that permit the distinction of individual 

edges from oscillations. We obtain a multiscale decomposition by recursively smoothing the image while also 

progressively coarsening the scale at which extrema are detected. 

 

 
Figure 1: (a) allowing detail to be extracted based on spatial scale rather than contrast and preserves edges. (b) Boosting 

of fine scale features ;thus increasing contrasr(c) Boosting of coarse scale contrast ;suppressing fine features ;thus 

reducing contrast of the pattern and increasing the contrast of the vase with background. (d) Scanline plots 

 

 

 

2. EXTREMA-BASED MULTISCALE DECOMPOSITION 
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Based on local extrema, we introduce novel definitions for edges and detail that permit the distinction between 

highly contrasted texture and single edges. We then develop an edge-preserving smoothing algorithm that allows 

fine scale detail to be extracted regardless of contrast. We perform an edge-preserving multiscale decomposition 

by recursively applying the smoothing algorithm on the base layer where the decomposition corresponds to 

features at different spatial scales with salient edges being preserved. Finally we compare our approach with 

existing decompositions and demonstrate its effectiveness using applications. 

 
Figure 2: 3 techniques for image decomposition with existiing methode - Bilateral filtering , weighted least squares (WLS) 

filtering and bidimensional empirical mode decomposition (BEMD) . 

 

The detail inherently captures repetitive variation of intensity,termed oscillations. The amplitudes of oscillations 

represent contrast while spatial-frequencies represents fineness in scale. Our goal is to smooth fine-scale 

oscillations, regardless of their amplitudes (see Fig 3). We extract the locally finest-scale oscillations as detail 
using a single smoothing operation, and by progressive smoothing we obtain a multiscale decomposition. We 

coarsen the scale at which extrema are detected by successive smoothing operations on the residual. 

 

Morphological operations do not preserve shapewhile empirical decomposition does not preserve edges . We 

exploit this information to preserve both edges and shape. Our algorithm is based on two key observations: 

 Detail, characterized by a large density of local extrema; 

 salient edges , characterized by a large variation in their neighboring extremal values The two important 

benefits of using local extreme upon contrast are : 

 We make no  assumptins on the dynamic range of the input image or on its amplitudes. 

 We obtain the local scale of oscillations independent of contrast. 

 
Recursive removal of detail cause the degrees of coarseness in the multiscale decomposition to capture the 

inherent superimposed scales of oscillation in the input image.We describe our algorithm for an input grayscale 

image I and perform the decomposition on the luminance channel for color images. We denote image-space 

coordinates (x, y) with boldface letters. Thus I(p) is the intensity of the given grayscale image I at pixel p. 
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Figure 3: Input intensities (red) along a row,separation into detail (green) and mean (blue). Some oscillations are 

extracted as detail D1 , while single edges having lower amplitude are preserved in the smoothed mean M1. 

 

A. Smoothing 

We define detail as oscillations between local minima and maxima (see Fig 4).Detail is extracted by subtracting 
a smoothed image, that we call the mean, from the input. The smoothing algorithm detect oscillations at their 

finest scale, locally, using the local extrema, We construct two extremal envelopes, by interpolating the minima 

and maxima independently, that sandwich the data. Information is propagated about local oscillations to all 

pixels in the image. The average of the two interpolants is evaluated at each pixel.This provides an estimate of 

the local mean about which the oscillations occur. The interpolants are to be edge preserved in the traditional 

sense so that they retain fidelity to the input at strong gradients. 

 

Our smoothing algorithm consists of three steps: 

 Identify of local minima and local maxima of I. 

 Interpolate the local minima and maxima to compute minimal and maximal extremal envelopes respectively. 

 computation of the smoothed mean M as the average of the extremal envelopes. 
 

 
Figure 4: The three steps of our smoothing algorithm is illustrated along the row . Step 1:  locating the local minima and 

maxima of the input (red). Step 2: determine the minimal (magenta) and maximal (blue) envelopes as edge-preserving 

interpolants with the min- ima and maxima . Step 3: Computing the average as smoothed mean . 

 

Figure 4 illustrates the three steps of our smoothing algorithm.by plotting 1D slices of the Barbara input image 
(red), its extrema, extremal envelopes (blue and magenta) and smoothed mean (black). D = I − M is the detail 

layer obtained. 

 

Extrema location: Pixel p is reported as a maxima if at most k − 1 elements in in the k × k neighborhood around 

p are greater (resp. smaller) than the value at pixel p. Oscillations whose max- ima are detected by using a k×k 

kernel have wavelengths of at least k/2 pixels. Intuitively, using a large kernel overlooks the detection of fine 

oscillations. We start with k = 3 and increase the kernel size for multiscalesmoothing,after extracting fine 

oscillation. 

 

Extremal envelope construction: Given an image I and a set of pixels S (image local extrema), we compute an 

extremal envelope E using an interpolation technique for image colorization. In our context, we seek an inter-
polantE such that neighboring pixels E(r) and E(s) have similar values if I(r) and I(s) are similar. More formally, 

we minimize the functional 
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subject to the constraint 

∀p∈ S E(p) = I(p). 

 

N (r) denotes the neighbors of r, and weights 

 

 

 

 
 

 

are computed using the local variance σ2 around r. We minimize the quadratic functional using their weighted 

least squares formulation, which reduces to solving a sparse linear system with N (r) defined as a 3× 3 local 

neighborhood. 

 

 

Smoothed mean: Performing the envelope construction indepen- dently on the minima and maxima of the 

image yields the minimal and maximal envelopes respectively. The smoothed mean image is computed as the 

average of these two envelopes (see Fig 4). 

 

B. Multiscale decomposition 

A single smoothing operation of I yields a detail image, D1 , that contains the finest-scale local oscillations and a 

mean, M1 , that rep- resents a coarser trend. We obtain a multiscale decomposition of the input image by 

recursively extracting a number of detail layers from the mean. After n recursive smoothing operations, we 

obtain detail images D1 , D2 , ..., Dn at increasing scales of coarseness and a residual mean image: 

 

 

 

 

 

Choosing k = 3 as the size of the extrema-location kernel for the first smoothing step of I results in a detail D1 

that captures oscillations of frequency up to 3/2 pixel−1. By increas- ing k, we effectively capture coarser 
oscillations while recursively smoothing M1 . Progressively increasing k through each recursive smoothing 

causes the different detail layers to contain increasingly coarse oscillations. In our experiments we found that the 

algorithm was not sensitive to the factor by which k was increased. For all the results in the paper we increased k 

by a constant value of eight, between iterations. Figure 5(d) visualizes the extrema of I, M1 and M2. For 

compact visualization, the three sets of extrema are shown in different vertical regions of the image. 

 

 
Figure 5: The local extrema of the input image, base layer in (b) and the base layer in (c) are shown as three abutting 

vertical regions in (d). 

 

3. RESULTS AND DISCUSSION 
Noise effection: If our input images is noisy, if the scale of the noise does not match the scale of input image 

features our algorithm separate the noise.Repeated an experiment on a greyscale image with several step-edges 
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of varying magnitude that polluted noise at two scales.By using our decomposition algorithm it recovers the 

noise at different scales (see Fig 6). 

 

Preservation of edge: Consider edges regions; where the variation in the neighboring extrema value is 

large.preservation of edges take place using our smoothing filters,because the extremal envelopes maintain 

accuracy to the pixels data here also nearby extrema value is large. Large-amplitude regions are smoothed 

effectively since the local extrema have similar values. 

 

Image scaling robustness: The scaled version decomposition of an image provides consistent results if the win-

dow used for extrema detection is scaled accordingly.The kernel size used in our extrema detection serving to 

decide the largest frequency of oscillations that can be extracted asdetail. 

 
Sparse-extrema: If the local extrema density is very low, the interpolation can become unstable. Low extremal 

density point out that the underlying function is very smooth. By Introducing artificial interpolation constraints 

in smooth regions makes the interpolation stable. 

 

Smoothing based on contrast reduction: The edge-preserving interpolation scheme that smoothed mean 

preserve isolated discontinuities. The large gradients interpolation for preservation may result in incomplete 

smoothing of oscillation. By increasing the window size for bothextrema location and performing the 

decomposition in the log-domain make this effect or repeat each smoothing step until the detail is completely 

extracted. 

 
Figure 6: (a) The input image I to which noise was added at different scales.The result of our decomposition(b) on a 

single row. The result of smoothing (c) using our algorithm. (e) A plot of the smoothed result (blue) using WLS filtering, 

along with the input (red). (f) A plot of the our smoothed result (black) with the input (red). 

 

Textured regions features at its boundaries: If the boundary oscillation having large amplitude of textured 

regions are indistinguishable from edges. Figure 7 indicate an example where, despite the high contrast, the 

spotted pattern is smoothed while the shading is preserved on the coarse scale. So the bright spots at the 

boundaries are mis- taken. For these kinds of cases require importent information such as from an explicit 

pattern matching algorithm 
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Figure 7: Despite the high contrast, the spotted pattern is smoothed while the shading is preserved on the coarse scale 

 

The smoothing and decomposition algorithms of ours tested on a variety of images. On average, a four layer 

decomposition of 1025 × 767 images took about 31 seconds using a solver for computing the extremal envelopes 

and byUsing a simple multi grid solver achieve a speedup of about 1.6. For lacating the locate extrema, we use a 

3×3 kernel by a constant value(8 through the recursion for coarser layers. 

 

A. Comparison 

We compare the difference between current algorithms and our approach. Our idea definition details the 

repetative oscillatory features between local extrema which produces different decompositions from existing 

solutions that elucidate large gradients as edges to be preserved. The differences are, coarse-scale have low 

contrast features and fine-scale have highly contrasted features. 

 

Low contrast features techniquesextract detail, typicallygive a practical exhibition and explanation of their utility 

using images where the low contrast detail also tends to be fine-scale. On such images, the difference in results 

are quite similar since fine-scale features extracted by our technique also happen to be of low contrast. For 

example, given the flower example(see Fig 8)we successfully bring about similar results. 

 

 
Figure 9: (a)input image .Fine scale enhancement (b)using WLS (c)our technique 

 

Figure 9 shows an example where the input texteres that is more contrasted than some edges. ByUsing a purely 

gradient dependent approach, smoothing the oscillationsmoothes low-contrast edges. But the current 

decompositions involve no ability to understand manipulation of input parameters across different images. By 

comparing to traditional approaches our technique is simple, smoothes texture, respects soft, single edges, 

preserves subtle shading and consistently smoothes a variety of images with widely different contrasts. 
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Figure 9: Gradient-based techniques cannot preserve subtle, coarse features while smoothing while our method can 

preserve subtle shading and effectively smoothes the texture. 

 

B. Applications 

We have been using multiscale decompositions of images, into layers of varying contrast, in several applications 

including equalization and image abstraction. In addition to these, we present applications that exploit a key 

property of our decomposition— the extracted layers correspond to superposed oscillations of increasing 
coarseness. We apply our decomposition to enhance and to remove detail . 

 

Hatch to tone: while preservivg edges,Few techniques are able to recover tone from images with hatching or 

stippling.Retaining edges is difficult during smoothing of high-contrast variation. By examing figure 10 the 

residual from three iterations of our smoothing algorithm on a cross-hatched input image can be determined. We 

done smoothening of fine-scale oscillations in earlier process.In the case of non-homogeneous high contrast 

oscillations, the edge preserving nature of the non-linear causes the contrast to be reduced. The residual 

oscillations amplitude depends on its original wavelength. While smoothing variation, the edges of variations are 

well preserved and then we compare our solution with a median filter. The problem is that, using a small size, 

tone is not recovered at a coarse scale and Increasing the kernel size wipes out thin features like outlines. 

Another drawback of this median filter is that the filter only selects pixel levels that are present in the input 

image. 
 

Separating fine texture and coarse shading:If the oscillations and shading area of texture are of different 

scales makes it possible to separate fine textures from shading. Although we make the same assumption that 

illumination information is “lower frequency” than texture, we do not make any assumptions on the contrast of 

the texture. Since the bilateral filter, they are prone to the additional assumption that the contrast of the texture 

and shading are vastly different. We demonstrate the effectiveness of our algorithm by retexturing an image 

containing high-contrast texture, while retaining shading on the newly painted texture (see Fig. 11). 

 
Figure 10: (b) A median filter has two disadvantages: A large kernel size elemenates thin edges while a small kernel size 

does not smooth the hatched pattern, the median filter selects cannot produce intermediate shades of grey levels only 

select one of the existing grey level. (c) After three iterations of smoothing the residual exist by using our algorithm yields 

a good estimate of the tone while preserving the edges of hatched regions. 
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Figure 11: (a) Input image (b) Illumination transfer onto painted texture 

 

Image equalization:By considering different linear combination of layers of our decomposition, we show that 

detail at different scales can be exaggerated. In practice, we perform the linear combinations in log space since 

we manipulate the log-luminance channel. Current equalization techniques define detail as low contrast. Instead, 

we are able to control relative contrasts of features based on their scales (see Fig.1). 

 
High dynamic range (HDR) images: Filters such as WLS and bilateral filters,that extract detail based on 

contrast are more appropriate tools for tone-mapping,We find that our equalizations produce reasonable results 

(see Fig. 12). Intuitive and consistent parameter values across different images are advantages f our method. 

Since we filter based on scale and not contrast, specialized techniques are preferable for input where the HDR 

content is spread across significantly different spatial scales. 

 

 
Figure 14:(a)Tone-mapped using the bilateral filter(b) Tone-mapped using the WLS filter(c) Our equalized result 

 

 

4. CONCLUSION 
We have presented a definition for detail as oscillations between local minima and maxima.Our definition of 

detail captures the scale of spatial oscillations, locally,while existing decomposition algorithms extract detail 

based on a notion of contrast,We proposed a simple algorithm for smoothing input image.Performing the 

smoothing recursively with extrema detection at multiple scales, we performed a decomposition of the input 

image into multiple-scale layers of detail. Our algorithm notonly smoothes high-contrast textures but also 

preserves salient edges. Finally we apply our decomposition in a variety of applications. 
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